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Application of methods of conditional multidimensional minimization
to the ballistic trajectory calculation problem

The paper focuses on the problem of calculating the approximate ballistic missile trajectory, the calculation
ensuring that the missile travels from a given launch point to the finish point and covering the entire range rate for
the missiles of the type considered. The missile trajectory is defined by a system of nonlinear differential equa-
tions. A different range is achieved by changing the initial values of the flight-path angle and the operating time of
the missile stages. Due to the physical significance, these variables are constrained. The problem of multidimen-
sional conditional minimization by the method of barrier functions with minimization of Nelder — Meed method.
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Introduction

The paper focuses on the problem of calculating
the approximate trajectory of a ballistic missile
from a given launch point to the finish point,
covering the entire range rate for the missile type
in question.

An intercontinental ballistic missile (ICBM)
with a range rate of 5000 to 10,000—13,000 km
(depending on the model) was selected as an
example. Each range corresponds to certain values
of launch parameters (angle of attack, operation
time of missile stages, flight-path angle). Usually,
a missile is controlled by the angle of attack.
The parameter’s time dependence is described by
a function depending on the missile model. There
is no public data on this function.

The trajectory calculation can be simplified
to a great extent if we assume the angle of attack
is equal to zero and if we select variable parame-
ters, which can be set discretely (flight-path angle
and operation time of each missile stage). It is
assumed that by changing the parameters listed
above, we can reach the specified range rate with
a selected accuracy, while maintaining compli-
ance with physical realizability requirements and
reference data.

System of equations for ICBM trajectory
calculation

A surface-to-surface intercontinental ballis-
tic missile has been selected as the research
object.
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The following assumptions have been made:

* the Earth is a spherical body;

* the Earth’s rotation is taken into account;

* the atmospheric model is exponential;

» the drag force is constant for each missile
stage;

* gravity acceleration remains unchanged
regardless of latitude and includes only the ra-
dial component, but it changes depending on
altitude;

 aerodynamic coefficients are constant.

With account for the specified assumptions
in projections on the axes of half-speed coordinate
system, the equations of centre of mass movement
composed relative to the observed velocity are
represented as follows [1, 2]:
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Here, m — missile weight including fuel (kg);

t — time (s);

u — fuel consumption rate (kg/s);

v —missile velocity (m/s);

P — drag force being constant until fuel is
depleted, then it is equal to zero (kg-m/s?);

o — angle of attack, i.e. the angle between
the velocity vector v projection on the symmetry
plane and longitudinal axis of aircraft (deg);

p —atmosphere density, p, = 1.225 (kg/m®);

S — reference area (m?);

ce, C, C} — aerodynamic coefficients
(1/deg?, non-dimensional, 1/deg, respectively);

g — gravity (kg-m/s?);

0 — flight-path angle (deg);

r — distance to the Earth’s centre (m);

v, — launch azimuth, i.e. heading from
launch point to end point (rad);

¢ — latitude (deg);

o — Earth’s angular velocity equal to
7.292115078-107 (s7");

R_ — Earth’s radius equal to 6,378,245 (m);

A — latitude (deg);

G — gravity constant equal to
6.67408(31)- 107" (m*s kg ™);

M — Earth’s mass equal to 5.97219 - 10** (kg).

The system of equations (1) is solved by
numerical integration. As the calculation accu-
racy criterion, a residual given as the function of
the initial flight-path angle and operation time of
each missile stage was selected:
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where 0,,, — initial value of flight-path angle;

Hau

t,, t,, t; —operation time of the first, second
and third missile stages, respectively;

Qrons Mon — Preset coordinates of the end
point;

P(Oaus 115 15 15), MOy, 11, 15, 13) —end point
coordinates determined by solving the system of
equations.

This criterion defines the accuracy needed
to bring an aircraft to the selected space point and
is represented as a function of several variables.

Due to physical reasons, these variables are
constrained as follows:

45°<0 < 890: 0< tl < tlmax’

Hay —
0< t2 < thaxa 0< t3 < t3max;

where )00 bmaxs B3max — Maximum operation
time of the first, second and third missile stages,
respectively.

Therefore, in order to solve the problem,
methods of conditional multidimensional mini-
misation shall be applied.

Methods of conditional multidimensional
minimisation

The target function is given as a system of dif-
ferential equations, therefore, it is impossible
to apply a series of methods which involve the
target function derivative. The variable replace-
ment method is also inadequate for the problem
in question. Moreover, we considered methods
based on reducing the minimisation problem
with constraints to the problem of minimisation
of a function without constraints. An auxiliary
function is introduced as the sum of the function
to be minimised and the penalty function with
account for constraints.

Method of penalty functions

An auxiliary function is to be selected, matching
a given function to be minimised within the
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admissible domain and rapidly increasing

beyond it:
Fox, =10+ w(g(x),1),

where f(x, /) — initial function to be minimised;
X= [xo, LRE3) xn];
n — number of variables;

[ — a vector parameter, [ ={,}, i =1, n;
g,(x) — constraints, g,(x)<0.
Here, v, (g;(x), ;) is the penalty function
with certain properties [3]:
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This method requires additional studies to
determine the functions such as , (g;(x), /;) and
values /,, i =1, n.

Method of barrier functions
This method is represented as follows

F(x, 1) = f(x, l)—ki;x), k> 0.

i

When x approaches the boundaries of do-
main X (from the inside), the values of at least
one of the bound functions approach zero from
the domain of negative values. In this case,
a large positive value is added to function f(x).
At k£ — 0, the minimum of function F(x, k)
tends to the minimum of function f(x) with con-
straints g;(x) <0 [3]. A significant advantage of
the method is that its application for calculating
an auxiliary function does not require additional
studies. That is why the method of barrier func-
tions was selected.

To determine the minimum of the resulted
auxiliary function, the Nelder — Meed method
was applied.

Results of ICBM trajectory calculations

The ICBM trajectory was calculated with the
help of numerical integration, using the two-step
Euler’s method with the second-order accura-
cy (integration step of 0.0005 s), the method of
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barrier functions and minimisation of the dif-
ference between calculated and preset coordi-
nates of the finish point using the Nelder — Meed
method. The Minuteman ICBM data was used as
source data [4, 5]. The resulted trajectories for
various ranges are shown in the figure.
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Figure. Results of ICBM trajectory calculation
for various ranges (km):
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Conclusion
The obtained results comply with physical signifi-
cance requirements and reference data. There-
fore, we may conclude that the method of barrier
functions along with Nelder — Meed method al-
lows to cover the required ballistic missile flight
range rate with the accuracy corresponding to the
ballistic missile performance characteristics.
The problem has been solved using the
“Fort” software product and is used for recogni-
sing various operational and tactical situations in
order to gather timely and accurate information
for aerospace warning. The calculated ballistic
missile trajectories are displayed on 2D and 3D
maps.
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IIpumeHeHHe METOA0B YCJA0BHON MHOTOMEPHO MUHUMHU3ALUU

K 3a/1aUe pacueTa TPaeKTOPUH 0AJIMCTHYECKOI paKeThI

PaccmoTpeHa 3agaya pacyeta npnbnmanTensHON TpaekTopum 6annmMcTMYeckon pakeTbl, obecneumsaroLLero
nonagaHue pakeTbl U3 3a4aHHON TOYKM CTapTa B TOYKY (hMHULLA U OXBATbIBAKOLLETO BECh AMAaNa30oH AarbHOCTEN
0115 pakeT paccMaTpmvBaemMoro Tuna. TpaekTopus pakeTbl 3ag4aHa CUCTEMOW HENMMHENHBIX AnddepeHLmanbHbIX
ypaBHeHWIN. [JOCTWXEeHME pas3nmMYHOM AarnbHOCTU 06ecrneyeHo M3MEHEHMEM HaYarlbHbIX 3HAYEHWUIA yria HaKkmnoHa
TpaeKkTopun 1 BpeMeHn paboTbl CTyneHen. B cBA3M ¢ hrM3nMYecKknM CMbICIIOM Ha 3TN NePEMEHHbIE HarnoXeHbl
orpaHunyeHus. PelueHa 3ajadya MHOrOMEPHOW YCNOBHON MUHUMMU3ALUN METOAOM BapbepHbIX (PYHKLUUA C MU-
HUMM3auunen metogqom Hengepa — Muaa.

Kntoyessie criosa: TpaeKTopuda GannucTnyeckomn pakeThbl, yCnoBHad MHOromepHada MMHUMN3aUUA.
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