
| S
pa

ce
 R

es
ea

rc
h 

an
d 

R
oc

ke
t S

ci
en

ce
 | 

59

| ISSN 2542-0542      Journal of “Almaz – Antey” Air and Space Defence Corporation | No. 3, 2017

Introduction
The paper focuses on the problem of calculating 
the approximate trajectory of a ballistic missile 
from a given launch point to the finish point, 
cove ring the entire range rate for the missile type 
in question.

An intercontinental ballistic missile (ICBM) 
with a range rate of 5000 to 10,000–13,000 km 
(depending on the model) was selected as an 
example. Each range corresponds to certain values 
of launch parameters (angle of attack, operation 
time of missile stages, flight-path angle). Usually, 
a missile is controlled by the angle of attack. 
The parameter’s time dependence is described by 
a function depending on the missile model. There 
is no public data on this function. 

The trajectory calculation can be simplified 
to a great extent if we assume the angle of attack 
is equal to zero and if we select variable parame-
ters, which can be set discretely (flight-path angle 
and operation time of each missile stage). It is 
assumed that by changing the parameters listed 
above, we can reach the specified range rate with 
a selected accuracy, while maintaining compli-
ance with physical realizability requirements and 
reference data.
System of equations for ICBM trajectory 
calculation
A surface-to-surface intercontinental ballis-
tic missile has been selected as the research 
object.

The following assumptions have been made:
• the Earth is a spherical body;
• the Earth’s rotation is taken into account;
• the atmospheric model is exponential;
• the drag force is constant for each missile 

stage;
• gravity acceleration remains unchanged 

regardless of latitude and includes only the ra-
dial component, but it changes depending on 
altitude;

• aerodynamic coefficients are constant.
With account for the specified assumptions 

in projections on the axes of half-speed coordinate 
system, the equations of centre of mass movement 
composed relative to the observed velocity are 
represented as follows [1, 2]: 
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Application of methods of conditional multidimensional minimization  
to the ballistic trajectory calculation problem
The paper focuses on the problem of calculating the approximate ballistic missile trajectory, the calculation 
ensuring that the missile travels from a given launch point to the finish point and covering the entire range rate for 
the missiles of the type considered. The missile trajectory is defined by a system of nonlinear differential equa-
tions. A different range is achieved by changing the initial values of the flight-path angle and the operating time of 
the missile stages. Due to the physical significance, these variables are constrained. The problem of multidimen-
sional conditional minimization by the method of barrier functions with minimization of Nelder – Meed method.
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Here, m – missile weight including fuel (kg);
t – time (s);
µ – fuel consumption rate (kg/s);
ν  – missile velocity (m/s);
P – drag force being constant until fuel is 

depleted, then it is equal to zero (kg·m/s2);
α  – angle of attack, i.e. the angle between 

the velocity vector ν  projection on the symmetry 
plane and longitudinal axis of aircraft (deg);

ρ  – atmosphere density, �0 � 1.225 (kg/m3);
S – reference area (m2);
Cxα

2 ,  Cx ,  Cyα  – aerodynamic coefficients 
(1/deg2, non-dimensional, 1/deg, respectively);

g – gravity (kg·m/s2);
θ  – flight-path angle (deg);
r – distance to the Earth’s centre (m);
ψa  – launch azimuth, i.e. heading from 

launch point to end point (rad);
ϕ  – latitude (deg);
ω  – Earth’s angular velocity equal to 

7.292115078 · 10–5 (s–1);
Rz  – Earth’s radius equal to 6,378,245 (m);
λ  – latitude (deg);
G – gravity constant equal to 

6.67408(31)·10–11 (m3s–2kg–1);
M – Earth’s mass equal to 5.97219 · 1024 (kg).
The system of equations (1) is solved by 

numerical integration. As the calculation accu-
racy criterion, a residual given as the function of 
the initial flight-path angle and operation time of 
each missile stage was selected:

J t t t t t t( , , , ) ( ) ( , , , )

( ) (
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where θнач  – initial value of flight-path angle; 
t1,  t2,  t3  – operation time of the first, second 

and third missile stages, respectively; 
ϕкон ,  λкон  – preset coordinates of the end 

point; 
� �( , , , ),нач t t t1 2 3  � �( , , , )нач t t t1 2 3  – end point 

coordinates determined by solving the system of 
equations.

This criterion defines the accuracy needed 
to bring an aircraft to the selected space point and 
is represented as a function of several variables.

Due to physical reasons, these variables are 
constrained as follows: 

45 89� � � ��нач ,  0 ≤ t1 ≤ t1max, 

0 ≤ t2 ≤ t2max, 0 ≤ t3 ≤ t3max,

where t1max, t2max, t3max – maximum operation 
time of the first, second and third missile stages, 
respectively.

Therefore, in order to solve the problem, 
methods of conditional multidimensional mini-
misation shall be applied.
Methods of conditional multidimensional 
minimisation
The target function is given as a system of dif-
ferential equations, therefore, it is impossible 
to apply a series of methods which involve the 
target function derivative. The variable replace-
ment method is also inadequate for the problem 
in question. Moreover, we considered methods 
based on reducing the minimisation problem 
with constraints to the problem of minimisation 
of a function without constraints. An auxiliary 
function is introduced as the sum of the function 
to be minimised and the penalty function with 
account for constraints.
Method of penalty functions
An auxiliary function is to be selected, matching 
a given function to be minimised within the 
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admissible domain and rapidly increasing 
beyond it: 

F l f l g lii

n
i( , ) ( , ) ( ), ,x x x� � � �

�� �
1

where f l( , )x  – initial function to be minimised;
x = [ , ..., ];x xn0

n – number of variables; 
l – a vector parameter, l li� � �,  i n= 1, ;  
gi ( )x  – constraints, gi ( )x ≤ 0.

Here, �i i ig l( ),x� �  is the penalty function 
with certain properties [3]:
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This method requires additional studies to 
determine the functions such as �i i ig l( ),x� �  and 
values l i ni , , .= 1
Method of barrier functions
This method is represented as follows

F l f l k
gii

n

( , ) ( , )
( )

,x x
x

� �
�
� 1

1
 k > 0.

When x approaches the boundaries of do-
main X (from the inside), the values of at least 
one of the bound functions approach zero from 
the domain of negative values. In this case, 
a large positive value is added to function f ( )x . 
At k → 0 , the minimum of function F k( , )x  
tends to the minimum of function f ( )x  with con-
straints gi ( )x  ≤ 0 [3]. A significant advantage of 
the method is that its application for calculating 
an auxiliary function does not require additional 
studies. That is why the method of barrier func-
tions was selected.

To determine the minimum of the resulted 
auxiliary function, the Nelder – Meed method 
was applied.
Results of ICBM trajectory calculations
The ICBM trajectory was calculated with the 
help of numerical integration, using the two-step 
Euler’s method with the second-order accura-
cy (integration step of 0.0005 s), the method of 

barrier functions and minimisation of the dif-
ference between calculated and preset coordi-
nates of the finish point using the Nelder – Meed 
method. The Minuteman ICBM data was used as 
source data [4, 5]. The resulted trajectories for 
various ranges are shown in the figure. 

s

km

Figure. Results of ICBM trajectory calculation 
for various ranges (km):

 – 5000;  – 9000;  – 12,000 

Conclusion 
The obtained results comply with physical signifi-
cance requirements and reference data. There-
fore, we may conclude that the method of barrier 
functions along with Nelder – Meed method al-
lows to cover the required ballistic missile flight 
range rate with the accuracy corresponding to the 
ballistic missile performance characteristics.

The problem has been solved using the 
“Fort” software product and is used for recogni-
sing various operational and tactical situations in 
order to gather timely and accurate information 
for aerospace warning. The calculated ballistic 
missile trajectories are displayed on 2D and 3D 
maps. 
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Применение методов условной многомерной минимизации  
к задаче расчета траектории баллистической ракеты
Рассмотрена задача расчета приблизительной траектории баллистической ракеты, обеспечивающего 
попадание ракеты из заданной точки старта в точку финиша и охватывающего весь диапазон дальностей 
для ракет рассматриваемого типа. Траектория ракеты задана системой нелинейных дифференциальных 
уравнений. Достижение различной дальности обеспечено изменением начальных значений угла наклона 
траектории и времени работы ступеней. В связи с физическим смыслом на эти переменные наложены 
ограничения. Решена задача многомерной условной минимизации методом барьерных функций с ми-
нимизацией методом Нелдера – Мида.
Ключевые слова: траектория баллистической ракеты, условная многомерная минимизация. 
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