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The theory of discrete signals determined

at finite intervals and its application
for aerospace image processing

The purpose of the work was to generalise the well-known and proved by the authors ideas allowing us
to expand the methods of applying orthogonal transformations in the field of aerospace image processing.
A theoretical and methodological basis for application of Vilenkin — Krestenson’s function systems has been
built in a non-trigonometric, minimally possible form. According to the provisions and findings resulting from the
theory of discrete signals at finite intervals, we offer the most viable option for constructing the basic functions
system from the entire variety of Vilenkin — Krestenson’s functions for which the signal shift is defined as the
bitwise addition of numbers by a certain modulus. The theoretical and methodological provisions obtained are
supported by the development of the algorithms for filtering and correlation analysis of aerospace images.
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Introduction

An image can be regarded as a discrete signal
defined at the finite interval of coordinate measu-
rements on a plane. At the present time, algo-
rithms built in spatial coordinates proved most
successful in the field of aerospace image pro-
cessing. In so doing, the spatial and frequency
properties of the images are not accounted for.
Information on the use of a classical Fourier
analysis for image processing can be found in
study [1]. However, computational complexity
of Fourier transform implementation restrains
widespread application of these methods in the
aerospace image processing practice.

To solve the problems of spectral analy-
sis, in a general case, any systems containing
a required number of orthogonal functions can be
used. Selection of a system of functions will be
determined by the requirements of computational
convenience and, ultimately, labour input with
regard to the algorithms of the sought transform
implementation. For application of alternative
systems of basis functions, a methodological com-
prehension of feasibility of their application for
solving the posed problems is required.

This paper generalises the ideas, well-
known and proved by the authors, that make it
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possible to expand the methods of applying or-
thogonal transformations in the field of aerospace
image processing. In this way, a theoretical and
methodological base is created for application of
the systems of Vilenkin — Krestenson’s functions
(VKF) in a non-trigonometric, minimally possible
form of their construction as Walsh functions. The
obtained theoretical and methodological provi-
sions are supported by examples of development
of the algorithms for filtration and correlation
analysis of aerospace images.

Basic investigation results

Based on the analysis of the principles and means
of aerospace image (ASI) generation [2], all
image-capture sensors of radio engineering sys-
tems can be divided into five groups:

» sensors built on the basis of charge-
coupled devices (CCD strips);

* single-beam sensors with conical or pla-
nar scanning;

* scan-type sensors;

» radar facilities of various stationing and
operating principle;

* thermal imaging and television devices
and systems employed, as a rule, on board atmo-
spheric aerial vehicles or ground-based stations.

The imaging methods and systems are used
for generating video data that can be recorded or
saved by any known technique. All of them have
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certain geometric structure, represent informative
part in the form of certain photographic density of
video tone, and can be transmitted via any known
data transfer system to a certain distance, i.e. pos-
sess a certain commonality, which permits to refer
to them using a common term “ASI”.

In accordance with the physical principles
of image generation and image transmission con-
ditions, the generated ASIs have specific distor-
tions, which include:

* synchronous distortions, conditioned by
variation of transfer characteristics of the pixel
brightness forming path and rigidly linked to the
ASI scanning law (the distortions are manifested
in the form of characteristic row- or column-wise
“synchronous banding”);

« distortions in the form of disturbance cha-
racterised by absolutely destructive effect (mani-
fested by “dead pixels”, normally grouped along
the ASI row), associated with losses in the com-
munication channel;

* non-synchronous distortions, not associa-
ted with the process of pixel brightness forming
and the scanning law (manifested in the form of
characteristic periodical “non-synchronous ban-
ding” with random angle of inclination to the ASI
columns). Elimination of such disturbances is a
partial problem in filtering images with periodical
disturbances and is not considered in this paper.

Elimination of the aforementioned distor-
tions is the main task in pre-processing of ASIs
for creating the conditions for their use according
to the intended purpose.

The mathematical apparatus applicable to
the operations of image processing depends on
whether the image exists in digital form. It is, first
of all, discrete transforms defined at finite inter-
vals. Introduction of the notion of “finiteness”
makes it possible to avoid contradictions arising
in the use of Fourier transform for spatial spectral
analysis of images that are described in a general
case by a non-stationary random process.

In this respect, use of the basic provisions
and findings resulting from the theory of discrete
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signals at finite intervals seems reasonable. This
theory is based on selection of the most acceptable
option for constructing a system of basis functions
out of the entire multitude of VKFs for which the
signal shift is defined as the bitwise addition of
numbers by a certain modulus. The VKF notion
embraces, as a special case, the system of Walsh
functions based on binary arithmetic. The metho-
dology of the Walsh system is based on the fol-
lowing properties.

1. All functions of the system are real-
valued functions in the definition interval N = 2",

2. The functions of the system take values
+1 and —1 only, therefore, when expansion by the
Walsh system is used, the basic operations are ad-
dition and deduction.

3. The system of Walsh functions is orthogo-
nal at the definition interval N, whereas Hadamard
matrix constructed by the Walsh functions is sym-
metrical.

4. The Hadamard matrix has dimension
N X N, therefore it comprises N orthogonal func-
tions and cannot be added to with a new ortho-
gonal function. Such system of functions is com-
plete and can be used for constructing unitary
transforms of non-harmonic spectral analysis. The
computational complexity of such transform will
be minimal, since all operations are substituted
for the operations of adding real numbers, unlike
the discrete exponential functions, where all the
numbers are complex [3].

The VKFs can be represented through
Rademacher functions, i.e. complex functions set
at the same interval N = m":

R(X) — ej(ZTC/m)xi.
Here, i — order of Rademacher function.
Then the VKFs can be written as

n—1

F(p,x)=[][R )

i=0

]<P,- >

For the case of m = 2, the Rademacher func-
tions can be set as follows:

Hx) = (),
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where <x;> — the i-th place of binary representa-
tion of variable x.
Under such setting, all Rademacher func-
tions are real-valued and odd at the interval N.
A system composed of them is not complete.
After complementing it to a complete one,
the system of Walsh functions can be written

wal(w, x)=ﬁ [l”j (x)™” ] )

where <w,> — value of the i-th place of Radema-
cher function number represented in the Gray code;
i=1,2,3,..,n.

If there is just one unity present in the
Rademacher function number, then Walsh func-
tion coincides with Rademacher function with the
corresponding number.

This way, at the definition interval N = 2"
the system of Walsh functions can be divided into
n groups. In this case, zero-order function is not
considered. If these groups are designated by
numbers k =1, 2, 3, ..., n, then each group will
start with Rademacher function 7,,,_, . Each group
includes 2"* functions, with the Rademacher
function accounted for. There and then, the system
of Rademacher functions is a sort of “frame”
around which the Walsh system is built. This fea-
ture can be used in spectral analysis of signals.

The methodology of such transform appli-
cation is based on a number of theorems, diffe-
ring from the theorems of classical spectral ana-
lysis [3]. Assertions following from the theorems
considered below allow to construct efficient al-
gorithms for filtration and correlation analysis of
aerospace images.

1. Theorem on dyad convolution. 1f {X n}
and {7, } are digit sequences set at interval N, then
convolution (correlation) sequence

N-1
Z = %ZX Ve, Will be defined as follows:
n=0

N-1
Z, =Y N(CF xCl).

u=0
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Here, C.¥ — spectral coefficients of sequence
(X1

C! —spectral coefficients of sequence {Yn} .

When using the dyadic convolution theo-
rem, the mechanism of signal elements formation
in spectral space after filtering can be perceived.
Unlike the existing classical spectral analysis
theorem, in this one no extremum is formed
in the coincidence point when computing the
autocorrelation function. Moreover, it cannot be
applied for constructing algorithms of automatic
alignment of image fragments.

2. Theorem on real-dyad convolution. If
{X,}, {¥,} are digit sequences set at inter-

val N, then convolution (correlation) sequence
l N-1
{Z,} = NZ X,Y,_, can be found as

n=0
N-1
Z, =Y CHC),.
u=0

Here, (C!), — spectral coefficients computed at
a shift of sequence {V,}.

By means of this theorem it is possible to
construct complex spectral filters and efficient
correlation analysis algorithms; it can as well be
used for constructing image alignment systems.
The theorem has no analogue in the classical spec-
tral analysis.

3. Theorem on invariance of thinned basis.
Let us assume that {/,} is a digit sequence ob-
tained from sequence {X,} as a result of dyad
shift by / (i.e. V, = X,e/), and

co=luv, c=

—H’X
N b

1
N w

where C” — Walsh spectrum coefficients for se-
quence {V,};

H,, — initial Hadamard matrix;

C* — sequency spectrum coefficients of
sequence {X,};

H° - randomly thinned Hadamard ma-
trix.
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Then
(CV)Z - (Cx)2 .

The theorem allows to eliminate some spec-
tral components by implementing certain filtration
types in the process of obtaining spectral rep-
resentation, which is not characteristic of other
systems of basis functions. The theorem proof can
be found in the paper [4].

4. Theorem on limiting of non-trigonometric
spectrum. Let us assume that z is the order of a
system of Rademacher functions, £ — number of
a group of functions in the Walsh system, and
spectrum limitation is provided at the level of
Rademacher functions with number n+1-k.
Then in the newly formed image, brightness of
the obtained elements is

1 N N
ngS] = EZ Zbgp’

g=1 p=1
where N, = E;
S
s =25
i,j=LN;.

For notation compactness, dependence
i(s); j(s); g(i); p(j) is not shown in the formula.

The theorem on limiting of non-trigonomet-
ric spectrum has no analogue in the classical spec-
tral analysis. It can be used in constructing image
alignment systems. Intuitive use of this property
allows to construct a two-level alignment algo-
rithm, using which makes the computational costs
tens of times lower. An implementation example
of such approach is given in [1].

5. Theorem on energy completeness of
quasi-two-dimensional spectral representation.
If b — digital image matrix with dimension
M x N, C —coefficients of its quasi-two-dimen-
sional spectral representation, then the following

equality holds true:
TONNTEEDN)
— b = — C:.
MN =S TMSS

This expression is a Parseval equality for
quasi-two-dimensional representation of two-
dimensional signals. To prove it, no special
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explication is required, since it follows from the
known spectral analysis properties. Consideration
of the theorem on energy completeness of quasi-
two-dimensional spectral representation has an
important methodological value, since it serves
as substantiation of the use of one-dimensional
spectrum of the image under two-dimensional
filtration, without a loss in image energy value.
It allows to reduce the computational costs two
times and have some other benefits from elimi-
nation of certain distortion kinds.

6. Theorem on steady component of the
spectrum. If it is assumed that b(x, 0) = 0 is a par-
ticular value of image element in each row, then
there is no need to transmit the steady component
of an image over the communication channel, as
it can always be reconstructed by the formula

Cy ==Y Clxv- 1)(—1)2 (=1),x,).

In this case the transmitted spectrum has no
steady component [5]. The theorem is characteris-
tic of the given type of transforms only, resulting
from their algebraic structure.

Algorithms for filtration, transmission,

and correlation analysis of aerospace images
The result of using theorems 1 and 5 for filtration
of an image with synchronous disturbances [6] is
given in Fig. 1.

The algorithm idea is based on applica-
tion of an averaging filter along image horizon-
tal axis. In accordance with theorem 1, a portion
of the energy of some spectral components is
lost in the process, which violates the require-
ments of the theorem on energy completeness. The
steady components are reinserted by introducing
a correction factor based on comparison between
image steady components column-wise before
and after filtering.

The algorithm of quasi-two-dimensional fil-
tration of images with disturbances in the form of
“dead pixels” (Fig. 2) is executed in two stages
[7]. At the first stage, based on detection of spec-
tral rows having deviations in energy, as compared

N I | Mathematics |
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Fig. 1. Example of filtering an image with synchronous disturbance:
a — initial image at RMSE = 7.4184; b —filtration result at RMSE =2.77

a

b

Fig. 2. Application results of the algorithm of quasi-two-dimensional filtration
of images with disturbances in the form of “dead pixels”:
a — image with disturbance at RMSE = 14.06; b — filtration result at RMSE = 1.71

with the rest of the rows, a set of “dead pixels” is
automatically generated. At the second stage, inter-
polation filtering is performed, based on accounting
of the values of spectral components near the “dead
pixels”. After reinsertion in the image space, an
image suitable for analysis is obtained.

The idea of the algorithm for transmitting
images without a steady component [5] directly
follows from theorem 6. If a column with
a priori known values (0 or 256) is entered in the
initial image, then transmission of spectral com-
ponent corresponding to the steady component
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can be omitted, and the component value will
be computed at the receiving side. Organising
such a mode of transmission is feasible, since
the field of vision of an optical system is always
larger than the readout element dimensions, and
there are the so-called shadow zones present in
the image. Application of this algorithm prac-
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tically does not affect the transmission quali-
ty (Fig. 3). However, additional possibilities
emerge in this case for transmission process
optimisation, including image compression.
An example of compressed image transmis-
sion, with the image featuring an urban area, is
given in Fig. 4.

Fig. 3. Example of image transmission with steady component reinsertion:
a — initial image; b — transmitted image at RMSE = 0.012

Fig. 4. Image transmission example:
a — initial image with dimension 512 x 512 pixels (size — 256 KB, transmission time — 210 ms);
b — after compression with compression rate 0.2 at RMSE = 7.0 (size— 21 KB, transmission time — 16 ms)

g I | Mathematics |
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Fig. 5. Process of image alignment:
a — initial and master images; b — images of the first stage
(theorem 4) and correlation function, horizontally and
vertically, obtained at the first stage; ¢ — correlation function,
horizontally and vertically, obtained at the second stage

Additional image compression during trans-
mission becomes possible after application of theo-
rem 6 in the algorithm for transmitting images without
the steady component. Resulting from this algorithm
operation, spectral components are transmitted that
correspond only to the changing part of the images.
At the same time, not all of the spectrum components
are significant in terms of energy, so they can be easily
dismissed. Besides, the theorem provisions on ener-
gy completeness of a quasi-two-dimensional spectral
representation are violated, therefore the image trans-
mission protocol provides for fields for transmission

| Mathematics |

of correctness, which ensure compliance with those
provisions [8].

The approaches and advantages of correla-
tion analysis for alignment of similar image frag-
ments are considered in detail in [9]. In this paper an
example is given of operation of a two-stage algorithm
for finding a master image in the current image, gene-
rated in the course of Earth’s surface survey (Fig. 5).
A coarse but fast search is performed at the first stage
and its results are elaborated on at the second.
Conclusion
Because of the large amounts of data handled in sol-
ving the tasks of ASI processing, it is necessary to
continuously search for methods and means to acce-
lerate this process, upgrading the mathematical appa-
ratus applied for constructing respective algorithms,
and first of all, those for discrete transforms defined at
finite intervals. Introduction of the notion of finiteness
makes it possible to avoid contradictions caused by
the use of Fourier transform for spatial spectral ana-
lysis of images that are described in a general case by
a non-stationary random process.

The considered examples allow to compre-
hend the methodology of applying Walsh transform
for constructing algorithms for elimination of syn-
chronous disturbances, as well as those associated
with the loss of pixels during image transmission.
The quality of the obtained images is quite ac-
ceptable for their further use (RMSE max. 7.0).
The algorithms for image transmitting and compress-
ing enable to reach time indices corresponding to video
stream transmission at a rate of 50 frame/s. The al-
gorithms for correlative alignment of images make
it possible to solve the tasks of stitching together the
images of adjacent flight paths of aerial vehicles and
construct systems of independent navigation as per
digital terrain maps. The application of a two-stage
approach allows to reduce the time for solving the
task of finding similar segments ten-fold and more.
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IIpuMeHeHMe TeOPUM TMCKPETHBIX CUTHAJIOB, ONPe/IeIeHHBIX HA KOHEYHbIX
HHTEpPBaJIax, A5 00padoTKN aIPOKOCMUYECKUX U300paKeHn i

O0606LUeHbI N3BECTHbIE Y AOKa3aHHbIe aBTOPaMu MONOXEHUS, NO3BONSALMNE pacUMpUTbL METOAONOMMI0 Npu-
MEeHeHMs OpTOroHarnbHbIX NpeobpasoBaHuii B 0bnactn o6paboTkm aspokocMmyeckmx nsobpaxerun. CosgaHa
TeopeTmyeckas n Metogoriormyeckasi OCHoBa NpPMMeHeHUs cucteM pyHkuui BuneHknHa — KpecteHcoHa
B HETPUTOHOMETPUYECKOW, MUHUMATBHO BO3MOXHOW hopMe. Ha oCHOBE MONOXEHWIN 1 BbIBOAOB, CEAYOLNX
N3 TEOPUM OUCKPETHBLIX CUTHaNOB Ha KOHEYHbIX MHTepBanax, BelbopaH Hanboree npuemnemblii BapuaHT no-
CTPOEHMUS cUCTEMbI BasnCHbIX OYHKLUMIA U3 BCcero MHoroobpasms dyHkumin BunernkuHa — KpecteHcoHa, ans
KOTOpPbIX COBUI CUrHana onpeaenseTcs Kak nopaspsaHoe CroKeHe Yncen no HEKOTopomy Mogynio. MNonyyeH-
Hble TeopeTMyeckme N MeTogoNorMyeckne NonoXeHns NoaKpeneHbl pa3paboTkon anropuTMoB pUAETPaLMm
N KOPPENSLNOHHOTO aHanM3a a3poKOCMMYECKNX N300paKeHU.

Knoyessie crioga: asapokocMmnyeckme n3obpaxeHusi, CUCTEMbl OPTOrOHarbHbIX (OYHKLMIN, CNEKTparnbHbIA aHa-
nn3, KOPPENALMOHHbBIA aHanua, anropuTMbl KBasuaByMepHON unsTpaLmm, anroputMbl KOPPEnsLMOHHOMO
COBMELLEHUS.
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CgeriioB I'enHaamii BajeHTHHOBHY — KaHIUAAT SKOHOMHUYECKHX HAyK, T€HEpalbHBIH TUPEKTOp AKIMOHEPHOTO
ob1ecTBa «Ps3aHcKkoe MPON3BOJCTBEHHO-TEXHUYECKOE MpeanpusitTie «I pannuTy, r. Ps3aHb.
OO6nacTh HayYHBIX HHTEPECOB: CHCTEMBI TIOBBIIICHHS KadecTBa pa3pabOTKH 1 SKCIUTYaTallMH CIOKHBIX CHCTEM.

CymenkoB Hukonaii AnekcaHApoBHY — JOKTOP TEXHUYECKUX HAyK, TIABHBINH WH)KEHEpP — 3aMECTHUTENb TeHEPAITLHOTO
JTUpEeKTOpa AKIIMOHEPHOTO o0IecTBa «Ps3aHckoe MPON3BOACTBEHHO-TEXHUYECKOE NpeanpusaTie «I panut», r. Pa3aus.
O6ﬂaCTb Hay4YHbIX HTHTCPCCOB: dKCIIITyaTallus CJIOXKHBIX PAAUOTCXHUYCCKUX KOMIIJICKCOB.

KocrpoB bopuc BacmibeBM4 — JOKTOp TEXHHUYECKHX HayK, Mpodeccop, 3aMeCTHTENb HadajJbHUKA OT/eNa
aBTOMATH3MPOBAHHOW CHCTEMBl YHpaBICHHS AKIHMOHEPHOro oOmecTBa «Ps3aHCKOE NMPOM3BOICTBEHHO-TEXHUYECKOE
npeanpustue «I paHut», . Pa3aHs.

OOnacTh Hay4YHBIX HHTEPECOB: 00paboTKa N300pakeHUH, NCKYCCTBEHHBIA MHTEIUIEKT, HH)OPMAIIHOHHBIE TEXHOIOTHH.

®oxnna Haraabs CepreeBHa — COBETHHK TI'€HEPaJbHOTO AHMpEKTOpa AKIMOHEpHOro obmiectBa «Ps3anckoe
MIPOM3BOJICTBEHHO-TEXHUYECKOE TpeanpusaTue «[ panuty, r. Ps3ans.

OO6nacTe HayYHBIX HHTEPECOB: MPUMEHEHHE MH()OPMAIIMOHHBIX TEXHOJIOTHI U MYJIBTUMEIUHHBIX CHCTEM B 00pabOoTKe
M300pakeHUH.



