Preview

Вестник Концерна ВКО «Алмаз – Антей»

Расширенный поиск

Разработка программно-методического обеспечения гидродинамики и динамики подводных аппаратов

https://doi.org/10.38013/2542-0542-2015-1-88-93

Полный текст:

Содержание

Перейти к:

Аннотация

Представлен предметно-ориентированный программно-методический комплекс, позволяющий эффективно выполнять комплексное моделирование гидродинамики и динамики подводных аппаратов, последовательно решать частные задачи с учётом конструктивных особенностей аппарата, условий обтекания, способов обеспечения выхода аппарата из пускового устройства и устойчивого движения его по траектории.

Для цитирования:


Дегтярь В.Г., Пегов В.И., Мошкин И.Ю., Степанов В.В., Семёнов А.А., Хлыбов В.И. Разработка программно-методического обеспечения гидродинамики и динамики подводных аппаратов. Вестник Концерна ВКО «Алмаз – Антей». 2015;(1):88-93. https://doi.org/10.38013/2542-0542-2015-1-88-93

Разработка программно-методического обеспе­чения для моделирования и анализа результа­тов расчёта гидродинамики и динамики под­водных аппаратов связана с необходимостью решения таких задач, как совместное использо­вание математических моделей, описывающих физически разнородные процессы, исключение дублирования исходных данных и уменьшение подготовительной работы, ведение банка дан­ных выполненных решений.

На рис. 1 представлена обобщённая схе­ма программного комплекса WinGid, разра­ботанного ОАО «ГРЦ Макеева» для решения задач гидродинамики и динамики подводного старта. В этом комплексе с единых методоло­гических позиций осуществляется математиче­ское моделирование процессов гидродинамики и динамики движения аппарата в воде при вер­тикальном или горизонтальном выходе из пу­скового устройства, а также при входе аппарата в воду [1]. Комплекс позволяет моделировать различные способы снижения гидродинамиче­ских нагрузок при старте, такие как переход от режима сплошного обтекания к кавитационно­му, применение газоструйной завесы и гидро­динамических устройств, оптимизация формы аппарата. С целью облегчения управлением программным комплексом он снабжен инте­рактивной оболочкой, реализующей диалого­вый режим с пользователем, обеспечивающей редактирование исходных данных, управление проектами решаемых задач и предоставляю­щей пользователю возможность отображения результатов в графическом виде.

 

Рис. 1. Обобщенная схема функциональных возможностей комплекса WinGid

 

Для моделирования гидродинамики и ди­намики подводных аппаратов применяется мо­дульный принцип расчёта массоцентровочных и гидродинамических характеристик, опреде­ления траекторий движения, вычисления дей­ствующих на аппарат механических нагрузок. Структура вычислений частных задач строится по принципу «вход-выход», и результаты реше­ния одной частной задачи являются исходными данными для последующих задач. Такой под­ход позволяет автоматизировать обмен данны­ми между частными задачами, исключить ду­блирование и итерационные процедуры.

В качестве исходных данных для расчёта массоцентровочных характеристик использу­ются заданные распределения масс конструк­ции, сосредоточенные массы конструкции и распределения массы топлива.

Задача определения гидродинамических характеристик аппарата является базовой, на основе решения которой строятся задачи ди­намики и определения механических нагрузок аппарата. В ней рассматривается тело враще­ния, состоящее из цилиндрического корпуса и притупленной носовой части. Силы потенци­ального и вязкого происхождения рассчиты­ваются независимо друг от друга. Результаты расчёта используются на всех последующих этапах моделирования [2, 3].

Задача динамики аппарата представлена двумя независимыми задачами: определение параметров продольного движения в пуско­вом устройстве и расчёт параметров углового движения в пусковом устройстве, в воде и при пересечении поверхности воды. Разделение об­щей задачи динамики при движении аппарата в пусковом устройстве на задачи определения продольного и углового движения связано как с предположением о малом взаимном влиянии этих составляющих движения друг на друга, так и с необходимостью моделирования физи­чески разнородных процессов. Так, в основе расчёта динамики продольного движения ле­жит моделирование газодинамических про­цессов, происходящих в свободных объёмах между пусковым устройством и аппаратом, а расчёта углового движения в пусковом устрой­стве - действие внешних сил, среди которых основное значение имеют силы гидродинами­ческой природы и реакций амортизации.

Одной из главных проблем при расчёте газодинамических параметров в характерных объёмах является корректный учёт энергетиче­ских потерь, связанных с теплообменом между продуктами сгорания топлива, стенками пу­скового устройства и поверхностью самого аппарата. Энергетические потери в пусковом устройстве при пуске аппарата могут достигать 20-30 % от общей энергии, поступающей от источников продуктов сгорания. Учёт влияния теплообмена проводится путём введения ко­эффициента, учитывающего теплопотери при вычислении температуры газов, поступающих в свободные объёмы.

Реализация математической модели, ос­новные особенности которой определяются способом пуска, конструктивными особенно­стями пускового устройства и самого аппарата, позволяет:

  • решать проектные задачи выбора энер­горасходной характеристики средства пуска;
  • рассчитывать тягу двигательной установ­ки с учётом противодавления;
  • выполнять расчёт газовой полости, фор­мирующейся в районе среза пускового устрой­ства совместно с процессом формирования ис­кусственной каверны аппарата;
  • рассчитывать динамику развития струй­ной газовой защиты;
  • рассчитывать гидродинамические харак­теристики аппарата с учётом текущих параме­тров динамики.

Результатом решения задачи являются определение параметров продольного движе­ния аппарата, величины давлений в характер­ных объёмах и уточнёние гидродинамических характеристик.

После определения параметров продоль­ного движения аппарата в пусковом устройстве решается задача динамики углового движения, математическая модель которой строится на базе уравнений Эйлера - Лагранжа. Это позво­ляет выполнить расчёт перемещений аппарата относительно удароопасных сечений пусково­го устройства с учётом движения подводной платформы, волнения моря, конструктивных особенностей пускового устройства. Угловое движение аппарата в пусковом устройстве про­исходит под действием сил, обусловленных взаимодействием аппарата и воды, а также реакций системы амортизации между пуско­вым устройством и аппаратом. Программный комплекс позволяет выполнять оценку различ­ных способов снижения уровня гидродина­мических нагрузок, таких как формирование искусственной каверны или струйной газовой завесы, которые улучшают гидродинамические характеристики аппарата, рассчитанные с учё­том двухфазного обтекания и размеров газо­вой полости. Если рассматриваемый аппарат характеризуется значительным удлинением, то для него может производиться расчёт дина­мики углового движения с учётом упругих де­формаций корпуса. Учёт упругих деформаций осуществляется с использованием балочного представления корпуса аппарата. Для опре­деления гидродинамических нагрузок прово­дится расчёт коэффициентов инерционных, позиционных и вращательных сил. Они описы­вают нестационарное взаимодействие упругого аппарата с жидкостью, учитывают такие кине­матические параметры, как угол атаки, угловая скорость, обобщённые координаты и обобщён­ные скорости. Система дифференциальных уравнений, описывающих динамику аппарата, в этом случае расширяется, и совместно с си­стемой уравнений Эйлера - Лагранжа решает­ся система уравнений Лагранжа, описывающая упругие деформации корпуса аппарата.

Эта же математическая модель исполь­зуется и при расчёте параметров динамики аппарата при движении на подводном участке траектории, пересечении воды и начальном воздушном участке или при входе в воду. От­личие состоит лишь в том, что в уравнениях отсутствуют силы реакций опорно-ведущих поясов. Математическая модель также позво­ляет учитывать такие особенности, как расчёт гидродинамических коэффициентов при на­личии интерцепторов, решётчатых рулей или хвостового оперения. Существует возможность расчёта тяги двигательной установки аппарата с учётом противодавления, что позволит ре­шать задачи управления.

Важной задачей является определение механических нагрузок, действующих на ап­парат. Для их вычисления вводится локальная система координат, например, от носка до рас­сматриваемого сечения аппарата. Для этой си­стемы применяется принцип Даламбера: при движении в каждый момент внешняя сила, внутренняя сила и сила инерции в рассматри­ваемом сечении аппарата, а также моменты этих сил относительно какого-либо центра вза­имно уравновешиваются. Использование этого принципа позволяет строить распределения внутренних сил и моментов, действующих в конструкции аппарата по длине. Задача реша­ется совместно с задачами динамики.

На рис. 2 представлен вид рабочего окна программного комплекса WinGid. В левой ча­сти окна расположены элементы для управле­ния проектами, отображения состава проекта и хода его решения, в правой - элементы, ото­бражающие результаты расчёта как в таблич­ном, так и в графическом виде.

 

Рис. 2. Рабочее окно программного комплекса WinGid

 

Корректность расчётов, выполненных с помощью программного комплекса, подтверж­дается модельными экспериментами, такими как вход аппарата в воду и его последующее погружение, вертикальный выход аппарата из пускового устройства с последующим движе­нием в воде и выходом из воды, что позволяет продемонстрировать основные возможности программного комплекса.

Сравнение последовательных расчётных и экспериментальных положений аппарата (рис. 3) показывает достаточно хорошую схо­димость результатов, что подтверждает достоверность используемой математической модели, которая отражает основные особен­ности сопровождающих физических процес­сов: движение в естественной нестационарной каверне, исчезающей с увеличением глубины погружения, движение аппарата в широком диапазоне углов атаки.

 

Рис. 3. Сравнение расчётных и экспериментальных положений при входе в воду и погружений в гидробассейне. Вектор указывает расчётное положение аппарата

 

Сравнение расчётных и эксперименталь­ных параметров, описывающих динамику ап­парата в пусковой установке, при движении в воде и при выходе из воды, приведены на рис. 4-6.

 

Рис. 4. Сравнение расчётных и экспериментальных проекций линейных скоростей центра масс аппарата

 

 

Рис. 5. Сравнение расчётной и экспериментальной проекций угловой скорости аппарата

 

 

Рис. 6. Сравнение расчётных и экспериментальных параметров каверны и газовой полости

 

На графиках используются следующие обозначения: Vx, Vy - проекции линейной ско­рости центра масс аппарата; Vxmax, Vymax - мак­симальные значения проекций скорости цен­тра масс; V0y - проекция линейной скорости платформы; | Vymax | - модуль проекции макси­мальной линейной скорости аппарата; Wz, Wzmax - проекция угловой скорости и её максималь­ное значение; t,tmax - текущее время и полное время движения; Lк, Lкmax - длина каверны и ее максимальное значение; hп, hпmax - высота газо­вой полости над пусковым устройством и её максимальное значение; X, Xmax - вертикальный путь аппарата и его максимальное значение. Получено удовлетворительное соответствие расчётных и экспериментальных параметров.

Приведённые примеры показывают эффективность разработанного комплекса WinGid, который находит широкое применение в инженерных расчётах.

Список литературы

1. Дегтярь В. Г., Пегов В. И. Гидродинамика подводного старта ракет. М.: Машиностроение, 2009. 448 c.

2. Дегтярь В. Г., Пегов В. И. Гидродинамика баллистических ракет подводных лодок. Миасс: ФГУП «ГРЦ КБ им. академика В. П. Макеева», 2004. 256 с.

3. Дегтярь В. Г., Пегов В. И. Математические модели гидродинамики ракет // Математическое моделирование: сб. науч.-метод. тр. Челябинск: ЮУрГУ, 2003. С. 13–43.


Об авторах

В. Г. Дегтярь
ОАО «Государственный ракетный центр имени академика В. П. Макеева»
Россия

Дегтярь Владимир Григорьевич – доктор технических наук, профессор, член-корреспондент РАН, академик РАРАН, генеральный директор – генеральный конструктор ОАО «Государственный ракетный центр имени академика В. П. Макеева».

Область научных интересов: создание баллистических ракет подводных лодок, межконтинентальных баллистических ракет, ракетно-космических комплексов, системное проектирование, прикладная гидродинамика и аэродинамика, механика конструкций из композиционных материалов, материаловедение.

г. Миасс Челябинской обл.



В. И. Пегов
Челябинский научный центр УрО РАН
Россия

Пегов Валентин Иванович – доктор технических наук, профессор, ведущий научный сотрудник отдела фундаментальных проблем аэрокосмических технологий.

Область научных интересов: гидродинамика, газодинамика, динамика летательных аппаратов.

г. Миасс Челябинской обл.



И. Ю. Мошкин
Челябинский научный центр УрО РАН
Россия

Мошкин Игорь Юрьевич – кандидат технических наук, младший научный сотрудник отдела фундаментальных проблем аэрокосмических технологий.

Область научных интересов: гидродинамика, тепломассообмен.

г. Миасс Челябинской обл.



В. В. Степанов
ОАО «Государственный ракетный центр имени академика В. П. Макеева»
Россия

Степанов Владимир Викторович – ведущий математик.

Область научных интересов: динамика полёта летательных аппаратов, гидродинамика.

г. Миасс Челябинской обл.



А. А. Семёнов
ОАО «Государственный ракетный центр имени академика В. П. Макеева»
Россия

Семёнов Андрей Александрович – начальник группы.

Область научных интересов: динамика полёта летательных аппаратов, газодинамика, гидродинамика, тепломассообмен.

г. Миасс Челябинской обл.



В. И. Хлыбов
ОАО «Государственный ракетный центр имени академика В. П. Макеева»
Россия

Хлыбов Владимир Ильич – доктор физико-математических наук, начальник отдела.

Область научных интересов: аэродинамика, гидродинамика, тепломассообмен.

г. Миасс Челябинской обл.



Рецензия

Для цитирования:


Дегтярь В.Г., Пегов В.И., Мошкин И.Ю., Степанов В.В., Семёнов А.А., Хлыбов В.И. Разработка программно-методического обеспечения гидродинамики и динамики подводных аппаратов. Вестник Концерна ВКО «Алмаз – Антей». 2015;(1):88-93. https://doi.org/10.38013/2542-0542-2015-1-88-93

Просмотров: 373


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2542-0542 (Print)